NOVEL TOUGHENED EPOXY SYSTEMS FOR DAMAGE TOLERANT COMPOSITE PRESSURE VESSELS

SAMPE Brazil - 6 November 2018
Benjamin Benz
Presentation Outline

Olin
Composites – An Overview
Filament Winding
Composite Pressure Vessels
Motivation
Testing and Results
Summary
Olin History

OLIN INDUSTRIES

1892: Founded in East Alton, IL providing blasting powder to Midwestern coal mines

1896: Build first Chlor Alkali plant in U.S.

1898: Form Western Cartridge Company to manufacture small arms ammunition

1909: Introduce first commercial production of liquefied chlorine

1931: Acquire Winchester Repeating Arms

1940s - 1950s: Acquire cellophane, paper, lumber & powder-actuated tools businesses

1940s - 1950s: Build plants in Lake Charles, LA, and McIntosh, AL; buy Squibb

1954: Merge to create the Olin Mathieson Chemical Corporation

1950s - 1960s: Enter into phosphates, aluminum, urethanes, TDI, skis, camping equipment and homebuilding businesses; expand paper and forestry businesses

2007: Acquire Pioneer Americas LLC and sell the Metals business, resulting in a company similar in businesses to that which existed in the late 1890s

2012: Acquire K.A. Steel Chemicals, distributor of caustic soda and the largest manufacturer of bleach in the Midwest

2015: Acquire The Dow Chemical Company’s U.S. Chlor Alkali and Vinyl, Global Chlorinated Organics and Global Epoxy businesses; now world’s number one chlorine leader

MATHIESON CHEMICAL CORP.

1892: Founded in Saltville, VA to produce soda ash

1970s - 2000: Consolidate back to core businesses; spin offs include forest products (Olinkraft), military ordnance (Primex) and specialty chemicals (Arch); sell aluminum, TDI, urethanes and Squibb businesses
The World’s Chlorine Leader

No. 1

The World’s Chlorine Leader

The No. 1 global chlor alkali producer with largest chlorine production capacity.

The No. 1 global supplier of epoxy materials.

The No. 1 global seller of membrane caustic soda and chlorinated organics.

The No. 1 North American seller of chlorine, bleach and hydrochloric acid.
Unique Back Integration

Crude Oil → Naphta → Benzene → Propylene → Cumene → Acetone → Phenol → Bisphenol-A

Brine Salt → Electrolysis → CL₂ → NaOH → Allylchloride → Epichlorohydrin

EPOXY RESINS

Civil Engineering, Adhesives, Coatings, Composites, Electronics
Fiber Reinforced Polymer (FRP) composites are increasingly employed as metal replacements.
Composite Pressure Vessels

<table>
<thead>
<tr>
<th>Type 1</th>
<th>All Metal Pressure Vessels</th>
<th>Inexpensive but heavy and prone to corrosion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2</td>
<td>Predominantly metal partially wrapped with steel wire or composite</td>
<td>Slight weight reduction (30-40%) compared to Type 1 but still prone to corrosion</td>
</tr>
<tr>
<td>Type 3</td>
<td>Thin metal liner completely wrapped with carbon fiber composite shell</td>
<td>70% lighter than Type 1 cylinders and higher storage capacity. Higher cost.</td>
</tr>
<tr>
<td>Type 4</td>
<td>Plastic liner completely wrapped with carbon fiber composite shell</td>
<td>80% lighter than Type 1 and higher capacity than Type 3. Higher cost than Type 1-3.</td>
</tr>
<tr>
<td>Type 5</td>
<td>Liner-less all composite tank.</td>
<td>Still in development but projected to offer 16-20% higher storage capacity than Type 4.</td>
</tr>
</tbody>
</table>

Composite pressure vessels represent a safe and efficient option to store and transport cleaner energy sources.
Pros and Cons of Composite Pressure Vessels

Composites World Magazine (2017) “Going forward, demand for all metal CNG tanks will be outstripped by tanks that incorporate composites”

Benefits of Composite-based tanks vs. all metal

- Corrosion and fatigue resistant
 - ✓ Enhanced service lifetimes (up to 30 years vs. 15 years)
- Lightweight
 - ✓ 0.75 to 1 lb/L vs. 3 lb/L
- Improved energy storage density
 - ✓ Extended containment pressures (e.g. 5000 psi and higher with a practical structure weight)

Downside of Composite-based tanks vs. all metal

- Cost
 - ✓ Fabrication and material costs can be nearly double that of metal tanks

http://www.compositesworld.com/articles/the-outlook-for-composite-pressure-vessels

OLIN
Composites can be produced in unique sizes and shapes
Liquid Epoxy Resins – An Overview

✓ Ease of Processing
✓ Extremely good corrosion resistance
✓ Extremely good resistance against a wide range of chemicals (acids, base, solvents)
✓ Good adhesion to metals and fibers
✓ Versatile curing chemistry (wide variety of hardeners and catalysts)

✗ Typical Epoxy matrices are rigid and brittle after cure and prone to impact damage

Improving the toughness and damage tolerance of cured Epoxy Thermoset remains a major unmet need in the composites pressure vessel industry
Epoxy systems offer a good balance of processing ease and performance

Thermoset Resin Requirements for Composites

- **Processing** (Before/During cure)
 - Viscosity (Fiber wetting)
 - Potlife (Working time)
 - Reactivity (productivity)

- **Performance** (After cure)
 - Thermal (Tg, CTE, etc.)
 - Mechanical (Modulus, Strength, Toughness, etc.)
 - Physical (Water uptake, solvent resistance, etc.)
Filament Winding Composite Pressure Vessels

- Process involves wrapping resin-impregnated reinforcement fibers around a mandrel or a liner in a specified orientation; then transferring the part for curing in an oven to achieve final properties.
- For composite pressure vessels, liner may be metal (Type 3) or plastic (Type 4).
- Carbon fibers are the typical reinforcements for compressed gas storage.

Broad Resin Requirements

- Appropriate viscosity-temperature profile for fiber wetting.
- Adequate stability and reactivity.
- Thermal stability and mechanical performance after cure.
Why Toughening?

- The matrix can play a role in maximizing delivered fiber strength of a composite.
- Composite Pressure Vessels often employ additional composite layers to meet stringent impact requirements, adding both weight and cost.

Epoxy Toughening can ENABLE more reliable, durable composite parts.
Effects of Typical Toughening Agents

- Fracture Toughness (K_{IC}, G_{IC}) increases
 - Improved damage tolerance
- Viscosity increases (rubbers or rigid fillers)
 - Processing becomes a major challenge
- Reactivity changes (inorganic fillers)
 - Needs process modification
- Tensile Modulus Tensile Strength decreases (soft particles)
 - Reduces durability
- Change in T_g (plasticizer)
 - Impact on Service temperature

Balance is key for composite systems

Improving damage tolerance at the expense of other critical parameters could affect performance and/or processing
Olin Toughening Technology

Low viscosity toughening approach for drastic enhancement in toughness
Low-Viscosity Toughened Epoxy-Amine Systems

THE BIG DEAL

• Low viscosity for fiber wet out
• Long pot life
• Enhanced fracture toughness for damage tolerance

Applications
• Pressure Vessels (Type 4), Cryo Cylinders, Sporting Goods
Motivation and Objectives

The objective of this work was to examine the effect of a drastic enhancement in matrix fracture toughness on the damage tolerance of subscale Type 4 Composite Pressure Vessels

- Formulate Epoxy system with drastic enhancement in fracture toughness when compared to a standard Epoxy Anhydride system without toughening
- Fabricate subscale Composite Pressure Vessel to examine the relationship between resin matrix fracture toughness and composite scale properties
- Develop an impact test protocol to measure the residual burst pressure of the subscale vessel following a controlled impact
- Conduct preliminary evaluation on effect of enhanced matrix toughness on cryo performance of Type 3 subscale vessels
Materials

<table>
<thead>
<tr>
<th>Property</th>
<th>Standard</th>
<th>Toughened</th>
<th>Fiber Properties[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity at 25 °C (cP)</td>
<td>400-500</td>
<td>200-400</td>
<td></td>
</tr>
<tr>
<td>Tg (°C)</td>
<td>110-115</td>
<td>95-100</td>
<td></td>
</tr>
<tr>
<td>Fracture Toughness, K1c /Kq (MPa. m(^{0.5})) ASTM D5045</td>
<td>0.50 ±0.1</td>
<td>2.50 ± 0.05 (Kq)</td>
<td></td>
</tr>
<tr>
<td>Tensile Modulus GPa</td>
<td>3.0 ±0.1</td>
<td>2.8 ±0.1</td>
<td>255</td>
</tr>
<tr>
<td>Tensile Strength MPa</td>
<td>84 ± 7</td>
<td>66 ± 2.0</td>
<td>5520</td>
</tr>
<tr>
<td>% Elongation</td>
<td>6.0 ± 2.0</td>
<td>6.7 ± 0.6</td>
<td>2.1</td>
</tr>
</tbody>
</table>

[1] Grafil 37-800WD 30K from Mitsubishi Rayon Company

Toughened system has ~ 5x fracture toughness vs. standard system
Subscale Vessel Fabrication

- The subscale (7.5 L volume) vessels were fabricated by wet filament winding
- Epoxy resin impregnated carbon fiber composite shell was wrapped over a HDPE liner
- Initial winding was conducted in the hoop direction followed by helical winding at a winding speed of 30”/sec to produce a composite shell with a thickness of 0.25-0.3”
- The fiber volume fraction in the composite shell is close to 65 vol. %
- Following winding, the vessels were cured in an oven with the cure schedule, which involved an initial cure at 90 °C for 1h followed by a post cure at 110 °C for up to 5h

Low viscosity of the toughened system ensures uniform resin wet-out
Burst Test

Hydro burst testing was conducted by circulating high pressure water through the vessels until failure.

Failure point resulting in abrupt pressure drop is denoted as burst pressure.
Impact Test

Impact energy required to reduce burst pressure outside of measurement variability was selected as 237.7J.
Type 4 Subscale Damage Tolerance

Toughened epoxy systems show 24% improvement in burst pressure following impact damage
Matrix Toughening Effect on Performance

• Fiber properties are crucial for composite performance, while the resin matrix can ensure that the tensile properties of the fibers are delivered at the composite scale.

• Enhancement in fracture toughness could minimize the internal propagation of the cracks and crazing through the matrix, following an impact.

• During failure such as those experienced in a burst test following an impact where fiber breaks start to occur, the presence of the more damage tolerant matrix could potentially improve the bridging effect.

• The presence of a matrix with enhanced fracture toughness may also deliver additional benefits:
 – improved tolerance cyclic fatigue during service.
 – reduction of thermally-induced residually stress cracking during curing.
Toughened epoxy systems exhibit up to 6% higher cryo burst pressure.
Summary

- In this study, an Epoxy system with a drastic enhancement in fracture toughness was developed.

- A test protocol was developed to measure the residual burst pressure of the subscale Type 4 vessels following a controlled impact on the vessel surface.

- The retention of burst pressure following impact was improved by 23% for the subscale Type 4 vessels manufactured using toughened resins.

- The cryo burst performance of subscale Type 3 vessels was also improved and found to be 6% higher.

- The enhanced matrix fracture toughness reduces rate of crack propagation and may provide a fiber bridging effect during failure.

- Additional benefits of matrix toughening will be investigated in future work:
 - improved tolerance of cyclic fatigue during service
 - reduction of thermally induced residual stress cracking during curing.
<table>
<thead>
<tr>
<th>Resins</th>
<th>Hardeners</th>
<th>Hand/Wet Layup</th>
<th>Resin Infusion</th>
<th>Resin Transfer Molding</th>
<th>Filament Winding</th>
<th>Purification</th>
<th>Mold Building</th>
<th>T<sub>g</sub></th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LITESTONE® 1100E</td>
<td>LITESTONE 1101H</td>
<td>***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~75 °C</td>
<td>Hand-Wet-layup epoxy system</td>
</tr>
<tr>
<td></td>
<td>LITESTONE 1103H</td>
<td>***</td>
<td>***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~75 °C</td>
<td></td>
</tr>
<tr>
<td>LITESTONE 1500E</td>
<td>LITESTONE 1501H</td>
<td>●</td>
<td>***</td>
<td>***</td>
<td></td>
<td></td>
<td></td>
<td>~80 °C</td>
<td>Standard resin infusion epoxy system</td>
</tr>
<tr>
<td></td>
<td>LITESTONE 1503H</td>
<td>●</td>
<td>***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~80 °C</td>
<td></td>
</tr>
<tr>
<td>LITESTONE 1550E</td>
<td>LITESTONE 1553H</td>
<td>●</td>
<td>***</td>
<td>***</td>
<td></td>
<td></td>
<td></td>
<td>~75 °C</td>
<td>Advanced resin infusion epoxy system; especially recommended for carbon fiber infusion</td>
</tr>
<tr>
<td>LITESTONE 1900E</td>
<td>LITESTONE 1901H</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>***</td>
<td></td>
<td></td>
<td>~145 °C</td>
<td>Mold building/tooling system</td>
</tr>
<tr>
<td></td>
<td>LITESTONE 1903H</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>~145 °C</td>
<td></td>
</tr>
<tr>
<td>LITESTONE 2100E</td>
<td>LITESTONE 2102H</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>***</td>
<td></td>
<td></td>
<td>~120 °C</td>
<td>Toughened anhydride curing system</td>
</tr>
<tr>
<td></td>
<td>LITESTONE 2105H</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>~100 °C</td>
<td>Amine curing system; long pot life</td>
</tr>
<tr>
<td></td>
<td>LITESTONE 2107H</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>~100 °C</td>
<td>Amine curing system; long pot life and low exotherm</td>
</tr>
<tr>
<td>LITESTONE 2120E</td>
<td>LITESTONE 2122H</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>***</td>
<td></td>
<td></td>
<td>~110 °C</td>
<td>Toughened Anhydride curing system; suitable for type 4 pressure vessels</td>
</tr>
<tr>
<td>LITESTONE 2130E</td>
<td>LITESTONE 2131H</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>***</td>
<td></td>
<td></td>
<td>~115 °C</td>
<td>Anhydride curing system</td>
</tr>
<tr>
<td></td>
<td>LITESTONE 2142H</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>***</td>
<td></td>
<td></td>
<td>~115 °C</td>
<td>Toughened anhydride curing system; suitable for type 4 pressure vessels</td>
</tr>
<tr>
<td>LITESTONE 2210E</td>
<td>LITESTONE 2212H</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>***</td>
<td></td>
<td></td>
<td>~220 °C</td>
<td>Toughened anhydride curing system</td>
</tr>
<tr>
<td>LITESTONE 3100E</td>
<td>LITESTONE 3102H</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>***</td>
<td></td>
<td></td>
<td>~120 °C</td>
<td>Anhydride curing system</td>
</tr>
<tr>
<td></td>
<td>LITESTONE 3103H</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>~120 °C</td>
<td></td>
</tr>
<tr>
<td>LITESTONE 3170E</td>
<td>LITESTONE 3172H</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>***</td>
<td></td>
<td></td>
<td>~190 °C</td>
<td>Anhydride curing system</td>
</tr>
</tbody>
</table>

*** Target application
** Suitable for application
* Suitable for application under certain requirements
THANK YOU!