Choosing the Best Polyurethane Cast Elastomer for Demanding Applications

Dr. R. Scott Archibald, Ph.D.

6 November 2018
Polyurethane Industry

• The 2016 market for polyurethanes is estimated to be over $55 Billion.
• The 2016 diisocyanate (limited to MDI and TDI) market is estimated at $22 Billion.
• The 2016 US polyurethane market is expected to reach over $19 Billion and employ over 200,000 jobs.

*2014 UTECH Conference Website
Overview

- Markets
- Applications
- Urethane Chemistry
- Reasons to use urethane elastomers
- Application types
- Urethane elastomer comparisons to metal, rubber, and plastic
- Urethane limitations
- Control of Urethane Properties
- Urethane general selection
- Selecting the best urethane for a new application
- Field Testing
Major Polyurethane Markets

- Construction – rigid foam insulation
- Automotive – seating, vehicular interiors, facia
- Bedding and Furniture
- Footwear – shoe soles
- Textiles – Spandex,
- Adhesives and Sealants - flooring
- Electronics
- Machinery & Foundry
- Thermoplastic Urethanes (TPU)
- Coatings
- CAST ELASTOMERS – 2-3%
Major Cast Elastomer Polyurethane Applications

- Agriculture and Food Processing
- Office Machinery
- Oil and Gas Pipeline Parts
- Tire and Wheels
- Papermaking and Printer rolls
- Mining Parts
- Recreational – Golf Balls, Inline Skate wheels, Skateboard wheels, bowling balls
Urethane Prepolymer Synthesis

Polyether Polyol

Excess MDI

MDI Ether Prepolymer
Cast Elastomer Production

![Chemical Structure]

OCN

NH

O

[Carboxylic Acid]

O

NCO

HO

CH2CH2OH

Butanediol
Curative / Chain Extender

OCN

NH

O

[Amide Bond]

O

NCO
Production Supply Arrival

Prepolymer

Curative / Chain Extender
Prepolymer Preparation

- Melting in Oven
- Transfer to Machine Tank or Dispense to Pail
- Degassing
- Maintain Production Temperature

Prepolymer
Curative/Chain Extender Preparation

- Transfer to Machine Tank for Melting or Melt enough for single pour
- Maintain Liquid State
- Degassing
- Maintain Production Temperature
Polyurethane Processing

(Melting), Warming & Degassing

Meter Streams

Mixing

Dispensing

Molding

Curing

Demold

Post-Curing

Finishing

(Melting), Warming & Degassing
Polyurethane Processing

Meter Streams

Mixing

Dispensing

Molding

Machine Mixing

Dispensing

Hand Batching
Polyurethane Processing

Molding

Curing

Demold

Curing Oven

Demolding
Polyurethane Processing

Demold → Post-Curing → Post-Curing Oven → Finishing

Tradename Printing

Finishing
Polyurethane Elastomer

Think Elastic
Urethane Elastomer
Performance Advantages

• Tear Resistance
• Abrasion Resistance
• Toughness
• Load-bearing Ability
Urethane Elastomer Cost Advantages

• Reduced Downtime in Manufacturing Processes
 - Mining
 - Paper Mills
 - Pipelines
 - Machine Parts

• Lower Tooling and Equipment Costs for Small Production Runs
Mining - Hydrocyclones
Mining - Hydrocyclones
Urethane Lined Hydrocyclone Distributor
Paper Mill Rolls
Pipeline Pigs/Spheres
Pipeline Cleaning Pigs
Crossover Pads
Wheels for Forklifts and Lift Trucks
Processing Urethane Prepolymers

- **Open Casting** (Most Common, low cost)
- **Compression Molding** (for Precision Parts)
- **Centrifugal Molding** (Pipelining, multi-cavity, circular molds)
- **Liquid Injection Molding** (low pressure bottom fill)
- **Ribbon Molding** (Rolls, to big to open cast)
- **Spraying** (High/Low pressure; No Solvent/Solvent)
- **Rotational Molding** (Hollow Items)
- **Vacuum Casting** (Wire or Fiber Inserts)
- **Transfer Molding** (Multiple Precision Parts)
- **RIM – Reaction Injection Molding** (High Pressure Impingement Mixing)
- **B – Staging** (When molds can’t hold liquid)
- **Pressure Casting** (Pressure Chamber)
- **Solvent Casting** (Low Viscosity for Fabric Penetration)
- **Trowelling** (Repairs and Special Apps)
- **Dipping** (Long Pot life, Heat Activated)

Most Common

Least Common
Lined Steel Pipe – Centrifugal Cast
Gaskets/Seals – Compression Molding
Ride Wheels – Open Cast
Big Rolls - Ribbon Molding
Polyurethane Advantages over Metal

- Impact Resistance
- Lighter Weight
- Less Noise
- Better Wear
- Corrosion Resistance
- Low Cost Manufacturing
- Non-Sparking
- Non-Conductive
Mining Screen Operation
Polyurethane Working Hardness Range
Polyurethane Advantages over Rubber

• Abrasion Resistance
• Cut and Tear Resistance
• Oil Resistance
• Higher Load Bearing
• Harder Durometer Range
• Clarity; Translucence
• Non-Marking, non-Staining
• Pourable; Castable
• Ozone Resistance
• Microorganism Resistance *
• High or Low Hysteresis
• Versatility

* Polyether only
General Comparison of Polyurethane Elastomers with Various Rubbers

<table>
<thead>
<tr>
<th>Property</th>
<th>Polyurethane</th>
<th>Nitrile</th>
<th>Neoprene</th>
<th>Natural</th>
<th>SBR</th>
<th>Butyl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength (MPa)</td>
<td>20.7 to 65.5</td>
<td>13.8 +/-</td>
<td>20.7 +/-</td>
<td>20.7 +/-</td>
<td>13.8 +/-</td>
<td>13.8 +/-</td>
</tr>
<tr>
<td>Durometer</td>
<td>5A to 85D</td>
<td>40 to 95A</td>
<td>40 to 95A</td>
<td>40 to 90A</td>
<td>40 to 90A</td>
<td>40 to 75A</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.10 to 1.24</td>
<td>1.0</td>
<td>1.23</td>
<td>0.93</td>
<td>0.94</td>
<td>0.92</td>
</tr>
<tr>
<td>Tear Resistance</td>
<td>Outstanding</td>
<td>Good</td>
<td>Good</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Good-Excel.</td>
</tr>
<tr>
<td>Abrasion Resistance</td>
<td>Good</td>
<td>Fair-Good</td>
<td>High</td>
<td>Good</td>
<td>Fair-Excel.</td>
<td>Good</td>
</tr>
<tr>
<td>Compression Set</td>
<td>Good</td>
<td>Good</td>
<td>Medium</td>
<td>Good</td>
<td>Excellent</td>
<td>Good</td>
</tr>
<tr>
<td>Rebound</td>
<td>Very High to Very Low</td>
<td>Fair-Good</td>
<td>Low</td>
<td>Excellent</td>
<td>Low</td>
<td>Very Low</td>
</tr>
<tr>
<td>Gas Permeability</td>
<td>Fair-Good</td>
<td>Low</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Acid Resistance</td>
<td>Excellent</td>
<td>Good</td>
<td>Good</td>
<td>Excellent</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Aliphatic Hydrocarbons</td>
<td>Fair-Good</td>
<td>Good</td>
<td>Fair-Good</td>
<td>Fair-Excel.</td>
<td>Fair-Good</td>
<td>Excellent</td>
</tr>
<tr>
<td>Aromatic Hydrocarbons</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Good</td>
<td>Good</td>
<td>Excellent</td>
</tr>
<tr>
<td>Oil and Gas Resistance</td>
<td>Outstanding</td>
<td>Good</td>
<td>Excellent</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Oxidation Resistance</td>
<td>Good</td>
<td>Excellent</td>
<td>Fair-Good</td>
<td>Fair-Good</td>
<td>Fair-Good</td>
<td>Excellent</td>
</tr>
<tr>
<td>Ozone Resistance</td>
<td>Outstanding</td>
<td>Fair</td>
<td>Excellent</td>
<td>Good</td>
<td>Fair</td>
<td>Fair</td>
</tr>
<tr>
<td>Low Temperature Resistance</td>
<td>Excellent</td>
<td>Good</td>
<td>Good</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Good</td>
</tr>
</tbody>
</table>
Polyurethane Advantages over Plastic

• Non-Brittle
• Flex Resistance
• Abrasion Resistance
• Elastomeric Memory
Limitations of Polyurethane

- High Temperature Service
- Moist, Hot Environments
- Certain Chemical Environments
- Higher Cost versus other Polymers
Prepolymer Chemistry Controls
Polyurethane Properties

- **Diisocyanate Type**
 - TDI
 - MDI
 - Specialty (PPDI, Aliphatic, LF, etc.)

- **Polyol (Prepolymer Backbone) Type**
 - PTMG (Premium) Polyether
 - PPG Polyether
 - Polyesters (%Ethylene, %Butylene, Adipate, Succinate)
 - Specialty (Polycaprolactones, Polycarbonates, etc.)
Diisocyanates

TDI

Paraphenylene Diisocyanate

PPDI

Toluene Diisocyanate

MDI

Hexamethylene Diisocyanate
Prepolymer Backbones

Polyethers

Polypropylene glycol (PPG)

Polytetramethylene ether glycol (PTMEG)

Polyesters

Polyester (PEAG)

Polycaprolactone (PCI)
Physical Properties

Relative Performance for MDI Systems

(Performance: 1 = Best, 10 = Worst)

<table>
<thead>
<tr>
<th>Material</th>
<th>Abrasion</th>
<th>Low Temp</th>
<th>Hydrolysis</th>
<th>Oxidation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ester (standard)</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Ester (high abr)</td>
<td>1</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Polycaprolactone</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>PTMG Ether</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PPG Ether</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>
Hard Segment Chemistry Controls

Polyurethane Properties

• **Curative / Chain Extender Type**
 Diamine (fast reactivity - used with slower TDI Prepolymers)
 Diol, Triol (slower reactivity - used with faster MDI Prepolymers)

• **Polyol (Prepolymer Backbone) Type**
 Curative Ratio
 Temperatures (Prepolymer, Curing, Post-curing)

• **Additives**
 Plasticizers
 Fillers
 Stabilizers
Common Curatives

MOCA

H₂N-\begin{array}{c}
\text{Cl} \\
\text{H₂} \\
\text{NH₂}
\end{array}

Molecular Mass = 267.1537 u
Molecular Formula = C₁₃H₁₂Cl₂N₂

HQEE

\begin{array}{c}
\text{HO} \\
\text{O} \\
\text{O} \\
\text{OH}
\end{array}

Molecular Mass = 198.2157 u
Molecular Formula = C₁₀H₁₄O₄

MCDEA

H₂N-\begin{array}{c}
\text{Cl} \\
\text{H₂} \\
\text{NH₂}
\end{array}

Molecular Mass = 379.3665 u
Molecular Formula = C₂₁H₂₈Cl₂N₂

BDO

\begin{array}{c}
\text{HO} \\
\text{O} \\
\text{OH}
\end{array}

Molecular Mass = 90.1210 u
Molecular Formula = C₄H₁₀O₂

TMP

\begin{array}{c}
\text{HO} \\
\text{OH}
\end{array}

Molecular Mass = 134.1736 u
Molecular Formula = C₆H₁₄O₃

Equivalent Weight is ½ Molecular Mass for Di-functional Curatives
Equivalent Weight is 1/3 Molecular Mass for Tri-functional Curatives
Tear Strength Versus Stoichiometry

Tear Strength Versus % Theory

MOCA Concentration (% Theory)

ASTM D-470 Split Tear

ASTM D-624 Die C Tear

ASTM D-470 Split Tear Strength (Lbf/in)

ASTM D-624 Die C Tear Strength (Lbf/in)
Selection of a Polyurethane Elastomer for a Specific Application

• Properties Needed for the Job
• Most Probable Failure Mechanism
• Processing Characteristics
 Pot Life
 Ratio Control
 Viscosity
 Demold Time
 Process Temperatures
Polyurethane Elastomer Selection Guidelines

<table>
<thead>
<tr>
<th>Property</th>
<th>Greatest</th>
<th>Least</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>Ester</td>
<td>Ether</td>
</tr>
<tr>
<td>Elongation</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Modulus</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Tear Strength</td>
<td>Ester</td>
<td>PPG Ether</td>
</tr>
<tr>
<td>Compression Set</td>
<td>TDI</td>
<td>MDI</td>
</tr>
<tr>
<td>Rebound</td>
<td>MDI Ether</td>
<td>PPG Ether/ Ester</td>
</tr>
<tr>
<td>Low Temperature Usage</td>
<td>MDI Ether</td>
<td>TDI Ester</td>
</tr>
<tr>
<td>High Temperature Usage</td>
<td>TDI</td>
<td>MDI</td>
</tr>
<tr>
<td>Sliding Abrasion Resistance</td>
<td>Ester</td>
<td>PPG Ether</td>
</tr>
<tr>
<td>Impingement Abrasion Resistance</td>
<td>MDI Ether</td>
<td>PPG Ether</td>
</tr>
<tr>
<td>Heat Buildup</td>
<td>Ether</td>
<td>Ester</td>
</tr>
<tr>
<td>Hydrolysis Resistance</td>
<td>MDI Ether</td>
<td>TDI Ester</td>
</tr>
<tr>
<td>Oil Resistance</td>
<td>Ester</td>
<td>Ether</td>
</tr>
<tr>
<td>Heat Aging</td>
<td>Ester</td>
<td>PPG Ether</td>
</tr>
<tr>
<td>Low Cost</td>
<td>PPG Ether</td>
<td>Ether</td>
</tr>
</tbody>
</table>
Polyurethane Elastomer Other Selection Guidelines

<table>
<thead>
<tr>
<th>Property</th>
<th>Greatest</th>
<th>Least</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Durometer Formulations (<60A)</td>
<td>TDI Ester</td>
<td>Ether</td>
</tr>
<tr>
<td>Formulation Flexibility</td>
<td>MDI</td>
<td>TDI</td>
</tr>
<tr>
<td>FDA Dry Food</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>FDA Wet Food</td>
<td>MDI Ester</td>
<td>TDI</td>
</tr>
<tr>
<td>Low Cost</td>
<td>PPG Ether</td>
<td>MDI Ether</td>
</tr>
</tbody>
</table>
FDA Food Contact Systems

• Wet Food regulated by 21CFR 177.2600
• Dry Food regulated by 21CFR 177.1680
• Your prepolymer supplier can determine if their resins meet chemical standards
• Wet food approval requires water extraction of final part
• Dry food approval requires abrasion test of final part surface that contacts food
• Wet food formulations chemically qualify for dry food approval with positive abrasion test
• Some catalysts, plasticizers are also allowed
<table>
<thead>
<tr>
<th>Application</th>
<th>Urethane Type</th>
<th>Basis of Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Squeegees</td>
<td>MDI Ester</td>
<td>Chemical Resistance</td>
</tr>
<tr>
<td>Paper Mill Rolls</td>
<td>TDI Ether</td>
<td>Hydrolysis Resistance, Hardness Stability, Dynamics</td>
</tr>
<tr>
<td>Laundry Equipment</td>
<td>MDI Ether</td>
<td>Hydrolysis Resistance</td>
</tr>
<tr>
<td>Sandblast Curtains</td>
<td>MDI Ether</td>
<td>High Resilience, Impingement Abrasion Resistance</td>
</tr>
<tr>
<td>Hammers</td>
<td>TDI Ester</td>
<td>Tear Resistance, Low Resilience, Low Heat Buildup</td>
</tr>
<tr>
<td>Fork Lift Tires</td>
<td>TDI Ether (TDI Ester)</td>
<td>Low Heat Buildup</td>
</tr>
<tr>
<td>Grain Handling Equipment</td>
<td>MDI Ester</td>
<td>Abrasion Resistance</td>
</tr>
<tr>
<td>Oil Pipeline Pigs</td>
<td>TDI/MDI Ester</td>
<td>Oil and Abrasion Resistance</td>
</tr>
<tr>
<td>Roller Skate Wheels</td>
<td>MDI Ether</td>
<td>High Resilience</td>
</tr>
<tr>
<td>Printing & Coating Rolls</td>
<td>TDI Ester</td>
<td>Solvent Resistance, Good Physicals at Low Durometers</td>
</tr>
</tbody>
</table>
Low-Free Diisocyanate Prepolymers
(<0.1% Free Diisocyanate TDI, MDI, PPDI, HMDI, etc)

• Easier Processing
 Lower Viscosity
 Longer Pot Life

• Better Dynamics
 Less Heat Buildup

• Health & Safety
 Easier Plant Engineering Controls
Selecting a Polyurethane Elastomer for a New Application

- Decide What Properties are of Key Importance
 Physical Requirements and Environmental Resistance
 Consider most likely Mechanism of Failure
- Select Prepolymer / Curative Systems Which are Likely Candidates
- Consider the Engineering Design of the Part
- Consult Your Suppliers for Recommendations and Further Information
- Review Your Plant/ Processing Capabilities
Selecting a Polyurethane Elastomer for a New Application – Next Steps

• Run Whatever Preliminary Tests are Available
• Make Prototype Units of One or More Candidate Systems
• Field Test in Actual Service,
• Make Comparisons to Existing Materials
• Get Approval from Future Customers
• Gear up for Production
Field Testing – Scrapper Blades

• Is the Scrapper Blade used outside or is in contact with water?
• Is Abrasion the most likely failure mechanism?
Field Testing – Track Pads

• Track Pad is used outside.
• Is Impingement Abrasion Resistance or Sliding Abrasion Resistance most important?
• Is Cut and Tear resistance important?
Field Testing – Chock Blocks

- What materials will bear the load required to keep cargo in place?
- Will the new material be tough enough to resist wear and tear?
Review

- Applications
- Urethane Technology
- Overview
- Why use Urethane elastomers
- Types of Applications
- Comparisons to metal, rubber, and plastic
- Limitations of Urethane
- What Controls Urethane Properties
- Urethane Selection
- Selecting Urethane for a new application
- Field Testing
Thanks for your Attention!
Obrigada pela atenção!