LONG FIBER REINFORCED THERMOPLASTICS A LIGHTWEIGHT SOLUTION FOR ENGINEERING APPLICATIONS

SAMPE BRAZIL 2014

Ricardo Calumby
Manufacturing Process – Pultrusion

- Polymer: PP, PA, TPU, etc. + additives
- Extruder
- Thermoplastic Melt
- Impregnation Die
- Puller
- Granulator
- LFRT Pellets: 0.5” / 11mm Length

Fiber Rovings:
- Fiberglass,
- Carbon,
- Aramid,
- Stainless Steel
Manufacturing Process – Technologies

Step 1
Short Fiber Granule
Fiber Length = 0.2 – 0.4 mm

Step 2
Wire-Coated Or Co-Mingled Fibers

Step 3
Fully Impregnated Long Fiber Granule
Fiber Length = 11-25 mm

Step 4
Fully Impregnated, Continuous Fiber Reinforced Tape (CFR-TP)
Fully melt impregnation technology

- Each fiber fully impregnated / Constant fiber dispersion
- Superior mechanical properties
- Better surface finish
- Easier to process

SEM picture of pellet cross section
Wire coating technology – loose fiber
Pellets are fragile and break*

Cestran® pultrusion technology
Fully fiber melt impregnation*

* LFT pellet pictures after mill test
LFT properties by matrix

<table>
<thead>
<tr>
<th>Property</th>
<th>PP-GF40</th>
<th>PA66-GF40</th>
<th>PA6-GF40</th>
<th>PBT-GF40</th>
<th>TPU-GF40</th>
<th>PPS-GF40</th>
<th>HDPE-GF40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Stress @ Break (MPa)</td>
<td>140</td>
<td>215</td>
<td>205</td>
<td>180</td>
<td>210</td>
<td>170</td>
<td>80</td>
</tr>
<tr>
<td>Tensile Strain @ Break (%)</td>
<td>2,2</td>
<td>2,0</td>
<td>2,1</td>
<td>1,9</td>
<td>2,5</td>
<td>1,2</td>
<td>2,3</td>
</tr>
<tr>
<td>Tensile Modulus (MPa)</td>
<td>9.500</td>
<td>13.300</td>
<td>12.400</td>
<td>13.600</td>
<td>11.100</td>
<td>14.700</td>
<td>6.800</td>
</tr>
<tr>
<td>Charpy notched 23ºC (KJ/m²)</td>
<td>30</td>
<td>35</td>
<td>32</td>
<td>32</td>
<td>48</td>
<td>33</td>
<td>24</td>
</tr>
<tr>
<td>Density</td>
<td>1,22</td>
<td>1,45</td>
<td>1,45</td>
<td>1,61</td>
<td>1,52</td>
<td>1,49</td>
<td>1.27</td>
</tr>
</tbody>
</table>

LFT with 40% glass fiber with different matrix materials

- **LFT with 40% glass fiber with different matrix materials**

 - PP
 - PA66
 - PA6
 - PBT
 - TPU
 - PPS

 - **PP 40% short fiber**
 - **PA66 40% short fiber**
Specific strength (tensile strength/density) of LFT materials (Celstran® from Celanese) in comparison with metals (typical values)

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP-GF40</td>
<td>1,2</td>
</tr>
<tr>
<td>PA66-GF40</td>
<td>1,45</td>
</tr>
<tr>
<td>PA66-GF60</td>
<td>1,67</td>
</tr>
<tr>
<td>PA66-CF40</td>
<td>1,34</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>7,7</td>
</tr>
<tr>
<td>Aluminium</td>
<td>2,7</td>
</tr>
<tr>
<td>Zinc</td>
<td>6,0</td>
</tr>
<tr>
<td>Magnesium</td>
<td>1,8</td>
</tr>
</tbody>
</table>
LFT – Metal replacement

- **Weight reduction**: the use in vehicles leads to lower fuel consumption - energy savings
- **Lower production costs**: reduce assembly and secondary operations; lower scrap rates during standard processing; in-process recyclability potential; avoid painting thanks to in-mold color possibility
- **Flexibility of design**: easy to color; possibility of design in complex shapes; parts integration
- **Corrosion resistance**
- **Dimensional stability** – for high precision parts
Long fiber or short fiber?

Instrumented puncture test on LFT PP-GF40 (continuous line - Celstran® from Celanese) and a polypropylene with 40% short glass fibers (market reference – dotted line).
Long fiber or short fiber?

Creep curves for two LFT PP grades compared with short glass fiber reinforced PP and short glass fiber reinforced PA66

Tensile stress: 35MPa - According to ISO 899 part 1
Long fiber or short fiber?

Flexural creep modulus of LFT PP-GF40 as a function of time compared with a PP with 40% by weight short glass fiber flexural stress: 120MPa, temperature: 120º C)
Fiber Structure giving strong final parts

- Short fiber part shows no fiber integrity or structure
- Celstran long fiber part maintains shape due to fiber entanglement

Gear Wedge ‘Burn-off’ Results
Long fibers tend to orient less in the flow direction than comparable short fiber products, a fiber interlocking skeleton is formed in the molded part.

Lower warpage and shrinkage than with comparable short fiber reinforced molded parts.
Abrasion against steel - LFT PA66-GF40 and short fiber reinforced PA66 with 40% by weight glass fibers
Flow lengths of LFT PP-GF30 compared with PP with 30% by weight short glass fiber
Thank you!
NOTICE TO USERS: To the best of our knowledge, the information contained in this publication is accurate, however we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. All technical information and services of Ticona are intended for use by persons having skill and experience in the use of such information or service, at their own risk.

Further, the analysis techniques included in this publication are often simplifications and, therefore, approximate in nature. More vigorous analysis techniques and prototype testing are strongly recommended to verify satisfactory part performance. Anyone intending to rely on any recommendation or to use any equipment, processing technique or material mentioned in this publication should satisfy themselves that they can meet all applicable safety and health standards.

It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication.

Properties of molded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Any determination of the suitability of a particular material and part design for any use contemplated by the user is the sole responsibility of the user. The user must verify that the material, as subsequently processed, meets the requirements of the particular product or use. The user is encouraged to test prototypes or samples of the product under the harshest conditions to be encountered to determine the suitability of the materials.

Material data and values included in this publication are either based on testing of laboratory test specimens and represent data that fall within the normal range of properties for natural material or were extracted from various published sources. All are believed to be representative. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colorants or other additives may cause significant variations in data values.

We strongly recommend that users seek and adhere to the manufacturer's current instructions for handling each material they use, and to entrust the handling of such material to adequately trained personnel only. Please call +1-800-833-4882 for additional technical information. Call Customer Services at the number listed +1-800-526-4960 for the appropriate Material Safety Data Sheets (MSDS) before attempting to process our products. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist.

The products mentioned herein are not intended for use in medical or dental implants.